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Abstract. The exact phase diagrams of the one-dimensional Hubbard model, both attractive and
repulsive, in the presence of an arbitrary magnetic field h for various electron concentrations n
and on-site interaction strengths U < 0 or U > 0 are calculated and investigated. The exact
ground-state properties, namely, the ground-state energy, the average spin (magnetization), the
concentration of the doubly occupied sites, the kinetic energy, the chemical potential, the spin
(magnetic) susceptibility and the charge compressibility, are calculated and examined over a wide
range of interaction strengths U for various h and n. It is found that the spin susceptibility at half-
filling is non-analytic and changes discontinuously asU → 0. The exact theory shows the absence
of a charge energy gap in the U � 0 region for all n and provides, for the chemical potential,
the rigorous upper and lower bounds for half-filled and empty bands respectively. The analytical
results derived for the weak-coupling limit and asymptotic expansions for strong coupling are in
full agreement with the numerical calculations.

1. Introduction

The superconductivity and magnetism in low-dimensional systems have attracted much interest
since the discovery of self-organized stripe arrays, layers and ‘ladder’ structures in high-Tc
superconducting (HTSC) copper oxides [1–4]. Many predictions have been made with the
use of simplified models of electronic structure to capture the basic mechanisms and essential
features of the HTSC materials with highly anisotropic electronic properties. Due to the layered
structure, HTSC cuprates interpolate between two- and three-dimensional systems and more
recently there was found also explicit evidence [3–6] for local quasi-one-dimensional character
of the electronic structure. In the search for a mechanism responsible for the superconductivity
in these materials, it is instructive to investigate the variation of the ground-state properties
versus magnetic field and interpret the observed magnetic features [7], using a simplified model
with a magnetic field.

The Hubbard Hamiltonian with on-site attraction (U < 0) or repulsion (U < 0) of
electrons displays the essential features observed in HTSC materials and forms a reasonable
minimal model, where the electron correlation length and character of the pairing can be tuned
by varying the interaction strength |U/t | and the sign of the parameter U , the magnetic field
h and the electron concentration n. It also constitutes one of the very few exactly solvable
models in one dimension [8, 9].

The ground-state properties of the one-dimensional Hubbard model have been analysed
for the case where U < 0 [9–14] and U > 0 [15–19] for various n. Some elementary
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excitations and thermodynamic characteristics, including the specific heat coefficient, have
been calculated at finite temperatures [12, 20–22]. In the presence of a magnetic field some
of the ground-state properties were investigated within the attractive [9–12] and repulsive
Hubbard models [9, 12, 17–19]. However, only the number of doubly occupied sites has been
calculated so far for the entire U -space (−∞ < U < +∞) for the half-filling case [22]. Some
additional bibliography on this subject can be found in the review papers [23–25].

The exact theory serves as a benchmark for testing the accuracy of the approximate theories
especially in the intermediate-coupling regime (|U/t | ∼ 1) [14, 26]. In order to investigate
the electron–electron (U < 0) and electron–hole (U > 0) coupling versus the pair-breaking
effect of the magnetic field and n, the dependences of the exact ground-state properties on U
over the entire parameter space are very desirable. The purpose of this paper to carry out an
exact study over the entire parameter space −∞ < U < +∞ of the competition between the
attractive interaction between electrons at U < 0 or between the electron and hole at U � 0
responsible for the formation of electron–electron and electron–hole bound pairs respectively
and the corresponding pair-breaking effect of hole doping and the magnetic field.

Below, we present numerical Bethe-ansatz calculations of the ground-state properties and
the phase diagram in the presence of a magnetic field. The critical behaviour near the onset
magnetization and magnetic saturation are also analysed. It is found that the compressibility
and spin (magnetic) susceptibility exhibit anomalous behaviour and discontinuity asU/t → 0.
The results for the repulsive Hubbard model are equivalent to those obtained for the attractive
case and show the exact mapping between the positive- and negative-U Hubbard models
[27, 28].

The asymptotic expansions in the repulsive case for general densities n were derived
earlier [29,30]. Here, for comparison with the numerical results we present also new analytical
results for U > 0 and U < 0 for some limiting cases and h �= 0.

The paper is organized as follows. After an introduction (section 2) we give a short
review of the Bethe-ansatz formalism in the presence of a magnetic field (section 3) and the
solution of the Lieb–Wu equations for the limiting cases of U → 0 and the strong-interaction
limits, |U | → ∞ (section 4). In section 5 the magnetization curves are discussed in detail.
Section 6 presents the numerical results for some important ground-state properties, including
the compressibility and the spin susceptibility. Section 7 constitutes a summary. In the
appendices we deal with the expansion scheme for the limit |U | → ∞ and derive the general
expression for the spin susceptibility.

2. Hubbard model

The model under consideration is the one-dimensional Hubbard model in the presence of a
magnetic field, defined by the Hamiltonian

Hh ≡ H +HZ = −t
∑

〈i, j〉,σ
c+
iσ cjσ + U

∑
i

c+
i↑c

+
i↓ci↓ci↑ − h

2

∑
i

(c+
i↑ci↑ − c+

i↓ci↓). (1)

The notation is the same as in [14]. The parameter U is considered to be negative (U < 0,
attractive model) or positive (U > 0, repulsive model). The last term, HZ, in equation (1)
describes the Zeeman energy in the external magnetic field Hmag = h/gµB, where g ≈ 2 is
the electron g-factor and µB is the Bohr magneton.

The Hamiltonian (1) commutes with the operators of the total numbers of electrons with
up or down spins:

Nσ ≡
∑
i

c+
iσ ciσ σ = ±1 (↑ or ↓). (2)
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So the conserving quantities are: the number of electrons n per lattice site (electron
concentration or band filling) and the total spin s (magnetization) per lattice site defined as

n ≡ 1

Nlatt

∑
i,σ

〈
c+
iσ ciσ

〉
(3)

s ≡ 1

2Nlatt

∑
i,σ

σ
〈
c+
iσ ciσ

〉
(4)

where Nlatt is the total number of lattice sites, 0 � n � 1, 0 � s � n/2. The electron
concentration n is connected with the doping δdop = 1 − n. The limiting cases n = 0 and
n = 1 correspond to empty and half-filled bands respectively.

It is convenient to determine the ground-state average spin s in an external magnetic field
h by minimizing the average energy Eh ≡ 〈Hh〉 /Nlatt , i.e. from the equation

h = ∂E

∂s
(5)

where E ≡ 〈Hh −HZ〉 /Nlatt .

3. Lieb–Wu equations for U > 0 and U < 0

The Bethe-ansatz technique [8, 11, 13] gives an exact solution of the Hubbard model with the
HamiltonianH in one dimension. In the limitNlatt � 1 the corresponding expressions for the
ground-state characteristics in the attractive case (U < 0) were given in [14]. In the general
(attractive or repulsive) case the energy of the system per lattice site is

E = U

(
n

2
− s

)
�(−U)− 2t

∫ Q

−Q
dk ρ(k) cos k. (6)

�(x) = 1 if x > 0 and�(x) = 0 if x < 0, and ρ(k), σ(λ), f1(k, λ), f2(λ, λ
′) are determined

from equations (19)–(22) of [14], where U must be replaced by |U |. The normalization
conditions are ∫ Q

−Q
ρ(k) dk = (1 − 2s)�(−U) + n�(U)

∫ B

−B
σ(λ) dλ = n

2
− s. (7)

The expectation value of the Hamiltonian Hh per lattice site is

Eh = E − hs. (8)

The numerical solutions for U < 0 and general n and s = 0 have been reported earlier in
references [13, 14, 26]. The solution of the corresponding Bethe-ansatz equations determines
the energies E and Eh for general values of U/t , h (or s) and n.

4. Limiting cases

4.1. Weak-coupling limit

Here we consider analytical results in the exact theory for some limiting cases. For comparison
we present here results for U > 0 along with the U < 0 case.

In the limit |U/t | → 0 the functions f1(k, λ) and f2(λ, λ
′) have sharp peaks (see

equations (21) and (22) in [14]) at λ = sin k and λ = λ′ respectively. With an accuracy
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of the order of |U |/t or higher, we have an explicit solution of the coupled integral equations
for ρ(k) and σ(λ) for general electron concentration and arbitrary magnetic field:

ρ(k) =
{

1/π for |sin k| < B

1/2π for |sin k| > B
(9)

σ(λ) = 1

2π
√

1 − λ2
for − B < λ < B (10)

and

Q =
(

1 − n

2
− s

)
π B = sin

[(
n

2
− s

)
π

]
. (11)

Using (9) and (11) we have

E = −4t

π
sin

(
nπ

2

)
cos(sπ). (12)

The magnetization in the limiting case U → 0 is found from equations (5) and (12):

s =



1

π
arcsin

h

4t sin(nπ/2)
for 0 � h � hc2

n/2 for hc2 < h

(13)

and the spin (magnetic) susceptibility is

χ ≡ t ∂s

∂h
=




1

4π sin(nπ/2) cos(sπ)
for 0 � h � hc2

0 for hc2 < h

(14)

where

hc2 = 4t sin2(nπ/2) (15)

is a critical value of h for spin saturation (see (13) and below, section 5.1).
It is also easy to get an explicit formula for the concentration of the doubly occupied sites

(see section 5.2):

D = ∂E

∂U
= n2

4
− s2 (16)

and for the kinetic energy (see section 5.3):

Ekin = t ∂E

∂t
= E (17)

and the chemical potential (see section 5.4):

µ = ∂E

∂n
= −2t cos

(
nπ

2

)
cos(sπ) (18)

and also the compressibility (see section 5.4):

κch = ∂2E

∂n2
= tπ sin

(
nπ

2

)
cos(sπ). (19)
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4.2. Strong-coupling limit

For givenn and s at |U | � 4t we have general expressions for the main values (see appendix A):

Q =
{
(1 − 2s)π for U < 0

nπ for U > 0
(20)

B ∝ |U |
t
. (21)

So the main value of the energy is

E =



U

(
n

2
− s

)
− 2t

π
sin(2sπ) for U < 0

−2t

π
sin(nπ) for U > 0.

(22)

From here we get the limiting values

µ = ∂E

∂n
=

{
U/2 for U < 0

−2t cos nπ for U > 0
(23)

κch = ∂µ

∂n
=

{
O(t/U) for U < 0

2πt sin nπ for U > 0
(24)

D = ∂E

∂U
=

{
n/2 − s for U < 0

O(t/U) for U > 0
(25)

Ekin = t
∂E

∂t
=

{
−2t sin(2sπ)/π for U < 0

−2t sin nπ/π for U > 0
(26)

h = ∂E

∂s
=

{
−U − 4t cos(2sπ) for U < 0

O(t/U) for U > 0
(27)

1

χ
= ∂2E

∂s2
=

{
8πt sin(2sπ) for U < 0

O(t/U) for U > 0
(28)

where O(x) → 0 at |x| → 0.
From the last two formulae (27) and (28) we find that at U � 4t the spin saturation state

(s = n/2) is realized at infinitesimal magnetic field (hc2 → 0) and the corresponding spin
(magnetic) susceptibility χ diverges at h → 0.

It is necessary to note that formulae (9)–(28) are obtained at n �= 0. For example,
in an empty band (n = 0) for U < 0 the average spin s ≡ 0, so every quantity is
independent of the magnetic field. In this case we have B = 0, ρ = 1/2π , Q = π ,
E = Eh = D = Ekin = χ = 0, the critical magnetic fields for spin (magnetization) onset
and saturation, hc1 and hc2 (see section 5.1), are equal to each other for arbitrary coupling
and [12, 14, 31, 32]

µ = −
√
U 2

4
+ 4t2 (29)

(see appendix B), while µ = −2t for all U � 0 and h.
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5. Spin (magnetization) and the energy gap

5.1. Spin (magnetization)

First we give the description of the dependence of the spin s uponh necessary for understanding
the critical behaviour in the ground state. The s-versus-h curves (magnetization curves) are
found from equation (5) numerically for arbitrary U/t and n (see appendix B).

Our calculations show that the derivative of the energy with respect to the spin s (which
determines the magnetic field in equilibrium) is an increasing function of s. Let hc1(n, U) be
the solution of equation (5) for the minimal value of the spin (s = 0) at given n and U . At
h < hc1(n, U) the spin of the system has the constant value s = 0 (the zero-spin phase, or
phase I). A finite spin (magnetization) appears only if the magnetic field exceeds the critical
field hc1(n, U) (figure 1, upward-pointing solid triangles), associated with the spin energy gap,
and there is no paramagnetic response in the system to the smaller field h � hc1(n, U). In the
repulsive case the spin energy gap does not exist, so hc1(n, U) ≡ 0 independently of however
strong U > 0 is and an infinitesimal h results in finite χ−1 for all n (see section 6.5).

0 4 8 12 16
0 .0

0 .1

0 .2

0 .3

0 .4

0 .5

s

0 2 4 6

h /t

U /t =  -6 U /t =  2

0.20.2

0.40.4

0.6

0.8

1 1

0.8

0.6

Figure 1. The average spin (magnetization) s versus magnetic field h in the attractive (U = −6t)
and repulsive (U = 2t) Hubbard models for various electron concentrations n (figures labelling the
curves). The upward-pointing and downward-pointing triangles mark the critical magnetic field
values hc1/t and hc2/trespectively.

Let hc2(n, U) (figure 1, downward-pointing solid triangles) be the solution of equation (5)
for the maximal value of the spin s = n/2 at given n and U . For hc1(n, U) < h < hc2(n, U)

the spin of the system is finite, but not saturated, 0 < s < n/2 (intermediate phase or phase II).
Finally, for h > hc2(n, U) the saturated spin has the constant value s = n/2 (spin saturation
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phase or phase III).
Expanding the energy E into a power series in s in the vicinity of hc1 (near the onset of

magnetization) and taking the partial derivative of E with respect to s at s = 0, we have a
simple relation between the spin (magnetization) and magnetic field:

h− hc1 = a1s + a2s
2 + · · · (30)

where

a1 ≡ ∂2E/∂s2
∣∣
s=0 a2 ≡ ∂3E/2 ∂s3

∣∣
s=0.

When a1 �= 0 we have a linear dependence:

s = (h− hc1)/a1 (31)

and the spin (magnetic) susceptibility is finite

χ = t/a1. (32)

When a1 = 0 and a2 > 0 we have a square-root dependence:

s =
(
h− hc1

a2

)1/2

(33)

and the spin (magnetic) susceptibility has a square-root singularity:

χ = t

2 [a2(h− hc1)]
1/2 . (34)

Analogously, in the vicinity of hc2(n, U) we have

s = n/2 − (hc2 − h)/b1 χ = −t/b1 (35)

if b1 �= 0 and

s = n

2
−

(
hc2 − h

b2

)1/2

χ = − t

2 [b2(hc2 − h)]1/2 (36)

if b1 = 0 and b2 > 0, where

b1 = −∂2E/∂s2
∣∣
s=n/2 b2 = −∂3E/2 ∂s3

∣∣
s=n/2.

The calculations of the second derivatives of E with respect to s (the inverse spin
susceptibility at hc1 and hc2, or a1 and b1 respectively) show that away from half-filling the
spin (magnetic) susceptibility at hc1 and hc2 is always finite (see also section 6.5). Square-root
dependences at U < 0, equations (33) and (36), for arbitrary |U |/t occur only at n = 1 and
n = 0. For all U > 0 the square-root behaviour (36) occurs only at n = 1 near the saturation
hc2 (s = 1/2). At n ≈ 1 the coefficient a1 for U < 0 is very small (a1 � 10−3), so the linear
part (31) is very short. For strong attraction, a1 approaches zero for all n-values, which gives a
large slope at hc1. This circumstance can explain the discrepancy between the interpretations
of the results for magnetization in references [11, 12]. Thus our result for all 0 < n < 1
suggests linear scaling according to equations (31) and (35). It is interesting to note that at the
limit of large −U/t and for strong magnetic field, near h → hc1, the parameters a1 �= 0 and
b1 �= 0 and the normalized magnetization s/n give for all n �= 1 a scaling different from that
of an isotropic Heisenberg model with magnetic field [33, 34].

The square-root behaviour (36) near the spin (magnetic) saturation at h = hc2 exactly
at half-filling for all U -values, including U = 0, reflects the Van Hove singularity near the
band edge in one dimension. In addition, at n = 1 we have similar square-root behaviour,
equations (33) and (34), for all U < 0 near the onset of magnetization at hc1. In the repulsive
region (U > 0), hc1 ≡ 0 and an infinitesimal h results in finite s �= 0.
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For fixed h/t and n, the spin (magnetization) is zero (phase I) when the attraction
is sufficiently strong, i.e. |U | (U < 0) is greater than some critical value |Uc1(n, h)|
(Uc1(n, h) < 0) (figure 2, upward-pointing solid triangles). If the attraction is weak or the
repulsion is strong, i.e. U is greater algebraically than some another critical value Uc2(n, h)

(figure 2, downward-pointing solid triangles) the spin is saturated (s = n/2, phase III). For
intermediate coupling Uc1(n, h) < U < Uc2(n, h), the spin is non-zero and unsaturated
(0 < s < n/2, phase II) and increases algebraically with U .

-5 .0 -2 .5 0 .0 2 .5 5 .0
0 .0

0 .1

0 .2

0 .3

0 .4

0 .5

s

-5 .0 -2 .5 0 .0 2 .5 5 .0

U /t

-5 .0 -2 .5 0 .0 2 .5 5 .0
-5 .0 -2 .5 0 .0 2 .5 5 .0

1

1

1

0 .2
0 .2 0 .2

h /t = 0 .0 1 h/t = 0 .5 h/t =  1 h/t = 1 .5

0 .4

0 .6

0 .8

0 .4

0 .6

0 .8

0 .4

0 .6

0 .8

0 .2

Figure 2. The average spin (magnetization) s versus interaction strengthU/t for various magnetic
fields h/t and electron concentrations n (figures labelling the curves). The upward-pointing and
downward-pointing triangles mark the critical values Uc1/t and Uc2/t respectively.

5.2. Energy gap and phase diagram

The magnitude of the critical field hc1(n, U) for all U < 0 is associated with the spin energy
gap which depends also on the electron concentration [14].

At half-filling, the spin energy gap hc1(1, U) is [10, 11, 13]

hc1(1, U) = −U − 4t + 8t
∫ ∞

0
dw

J1(w)

w(1 + exp(−Uw/2t)) (37)

where J1(x) is the Bessel function of the first order. For fixed U the energy gap increases with
the decreasing of n and for an empty band (the zero-concentration limit) we have the maximal
value [13, 14, 32]

hc1(0, U) =
√
U 2 + 16t2 − 4t. (38)

At arbitrary n, hc1(n, U) is a decreasing function of U (figure 3, the bold curves). For U � 0
there is no spin energy gap, so hc1(n, U) ≡ 0.
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-10 -5 0 5 10

U /t

0

2
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8

10

h/
t

1

0 .4

0 .2

0 .6

0 .8

1

0 .2

s  =  0

s  = n /2

Figure 3. The phase diagram of the one-dimensional Hubbard model. The five thin curves for
n = 1, 0.8, 0.6, 0.4, 0.2 (figures labelling the curves) give the critical magnetic field hc2/t versus
U/t or the critical coupling Uc2/t versus h/t . The five bold curves for n = 0.2, 0.4, 0.6, 0.8, 1
give the critical magnetic field hc1/t versus U/t or the critical coupling Uc1/t versus h/t . The
region h � hc2 (orU � Uc2) corresponds to the saturated spin phase s = n/2. The region h � hc1
(orU � Uc1) corresponds to the phase with zero spin, s = 0. The intermediate area hc1 � h � hc2
(or Uc1 � U � Uc2) corresponds to the phase with 0 < s < n/2.

The number of broken pairs is increased gradually by the applied field and the system
becomes fully polarized above the upper critical field hc2(n, U). The parameter hc2(n, U) at
half-filling (n = 1) is determined by a simple expression:

hc2(1, U) =
{

4t − U for U < 0√
U 2 + 16t2 − U for U > 0.

(39)

The result for hc2 at U � 0 was obtained earlier for the closed Hubbard chain and in the
thermodynamic limit [17, 35]. For the general case of a given arbitrary n, the upper critical
field hc2(n, U) is also a decreasing function of U (figure 3, the thin curves). For given U it
decreases with decreasing n. At n = 0 we have a transparent result, hc2(0, U) = hc1(0, U).

Resolving the equations hc1(n, U) = h and hc2(n, U) = h with respect to U for given h
and n, we find the lower and upper critical couplings Uc1(n, h) and Uc2(n, h) respectively. It
can be seen from figure 3 that Uc1(n, h) < 0 for all n and h, but Uc2(n, h) may be positive if
h is not very large (e.g., Uc2(n, h) > 0 at h < 4t for n = 1).

Analogously, resolving the equations hc1(n, U) = h and hc2(n, U) = h with respect to
n for given h and U , we may obtain correspondingly the first and second critical electron



7442 C Yang et al

concentrations nc1(U, h) and nc2(U, h). It can be seen from figure 3 that there are only limited
areas of values U and h/t where nc1(U, h) and nc2(U, h) can be found between 0 and 1.

The curves in figure 3 define the boundaries for the onset and saturation of spin
(magnetization) for various n-values. The region between the two curves (bold and thin)
for the same n corresponds to the intermediate phase of unsaturated spin (magnetization)
0 < s < n/2.

It is clearly seen from the phase diagram that the increase in magnetic field at U < 0 is
equivalent to a decrease of the interaction strength |U |/t and vice versa. In contrast, for the
repulsive case U > 0, magnetization increases on increasing either h or interaction strength
U . In strong field h � hc2, all electrons are unbound and fully polarized with all spins
aligned (s = n/2) and, according to equation (12), the energy is the same as for free fermions,
E = −2t sin(πn)/π . Note that the upper critical field approaches its maximum value at n = 1
for both cases U < 0 and U > 0 [35].

6. Ground-state properties

6.1. Total energy

The ground-state total energy Eh for arbitrary values of interaction strength U/t , electron
concentration n and spin s can be calculated numerically from the integral equations (see
section 3) using the subroutine fred2 (see reference [36], section 18.1).

At given n and h/t , the total energy Eh monotonically increases (algebraically) with
U/t at U < Uc2 (values Uc2/t are indicated by downward-pointing solid triangles) and this
curve has different slopes (figure 4). In phase I (at U < Uc1; values Uc1/t are indicated by

-5 .0 -2 .5 0 .0 2 .5 5 .0
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-2

-1

0

E
  /

t

-5 .0 -2 .5 0 .0 2 .5 5 .0
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0 .8
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Figure 4. The total ground-state energy Eh/t versus U/t . The notation is the same as for figure 2.
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upward-pointing solid triangles) the dependence of Eh on U/t is asymptotically linear. In
phase II the slope gradually becomes gentler. Finally, at U > Uc2 (values Uc2/t are
indicated by downward-pointing solid triangles) in phase III of saturated spin we have
Eh = −hn/2 − 2t sin(nπ)/π , independently of U/t .

With increasing of h/t at given U and n, the total energy Eh decreases algebraically. At
fixed h, Eh versus n is a monotonic function for U < 0 and it becomes non-monotonic for
U > 0.

6.2. Concentration of doubly occupied sites

The concentration of the local pairs or doubly occupied sites D is defined as

D ≡ 1

Nlatt

∑
i

〈
c+
i↑ci↑c

+
i↓ci↓

〉
. (40)

Obviously (see (1)), this quantity measures the derivative of the energy with respect to U :

D = ∂〈H 〉
Nlatt ∂U

= ∂E

∂U
. (41)

Using the Lieb–Wu equations (see section 3 in [14] and section 3 in this paper) we calculate
D according to equation (41) (see appendix C).

The local attraction of electrons favours the formation of the local pairs with opposite
spins, while the local repulsion of electrons suppresses the pair formation. In contrast, the
magnetic field acts similarly in both cases and tends to destroy the pairs. So D decreases at
given n and h/t by increasing U/t from −∞ (figure 5). At the boundary of the phases I
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Figure 5. The ground-state concentration of doubly occupied sites D versus U/t . The notation is
the same as for figure 2.
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and II, i.e. at the onset of the spin (magnetization) at Uc1 (upward-pointing solid triangles),
the curve for D versus U has a cusp. Finally, at the boundary of the phases II and III at Uc2

(downward-pointing solid triangles) and above (spin saturation), D becomes zero.
At n = 0 the concentration of the doubly occupied sites D evidently vanishes for any U

and h. It vanishes also at n � nc2 (phase III with saturated spin) if at given U and h the value
nc2 is found between 0 and 1. Then D monotonically increases with n.

At fixed U and n, the magnitude of D is constant at h � hc1 (in phase I). However, it
decreases with h when hc1 < h < hc2 (in phase II).

6.3. Kinetic energy

From (1) and (40) we have an exact relation between the kinetic energy of the electrons
Ekin and D:

Ekin = E − UD. (42)

Otherwise, we may calculate the kinetic energy by differentiating the total energy with
respect to t :

Ekin = t
∂E

∂t
. (43)

We calculate Ekin in the exact theory by resolving the corresponding integral equations (see
(B1)–(B5) in reference [14]—with U replaced by −|U |).

In zero field h = 0, the kinetic energy increases (algebraically) from Ekin =
−4t sin(nπ/2)/π atU = 0 (see section 4.1) with increasing |U |/t for both signs ofU (figure 6)
and for n = 1 it is a symmetric function of U/t . The magnetic field facilitates the transition
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Figure 6. The ground-state kinetic energyEkin versusU/t . The notation is the same as for figure 2.
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into a fully saturated spin state with constant Ekin at U > Uc2. In finite magnetic field, Ekin/t

decreases with U/t only in phase I (zero spin), U � Uc1 (to the left of the upward-pointing
solid triangles in figure 6). For strong coupling |U |/t � |Uc1| (U < 0), we have s = 0 and
Ekin ∝ −t2/|U | (see equation (A.19) and equation (A.4)). This circumstance shows that the
local electron pairs at the limit of large −U/t have a bandwidth of the order of the exchange
parameter of the effective pseudo-spin Hamiltonian [28] rather than a bandwidth ∼t as in the
weak-coupling limit |U |/t � 1.

In the intermediate phase II (Uc1 < U < Uc2, 0 < s < n/2), the behaviour of Ekin

versusU is in general non-monotonic (the region between the downward- and upward-pointing
triangles in figure 6) and in this phase the kinetic energy approaches its minimum value.

Finally, in phase III, U � Uc2 (s = n/2), the kinetic energy is constant. In this case
Ekin = −2t sin(nπ)/π , so Ekin has the same value for n and 1 − n. This circumstance is
clearly shown for the curves for h/t = 1.5 and n = 0.2, 0.8 or n = 0.4, 0.6 to the right of
the downward-pointing solid triangles in figure 6. In particular, for n = 1 and s = 1/2 (or
n = s = 0) we have Ekin = 0.

The behaviour of Ekin/t versus h/t is non-monotonic, similarly to the dependence of
Ekin/t on U/t . In a weak magnetic field h � hc1, the magnetization is zero (phase I) and Ekin

is constant. In a stronger magnetic field hc1 � h � hc2 (phase II), the kinetic energy decreases
with h and passes through its minimum value. Further increase of h leads to the occupation
of higher energy states in the conduction band and a corresponding increase of the kinetic
energy. In sufficiently strong field h > hc2 (the spin saturation phase), Ekin is a constant. It is
symmetric relative to quarter-filling and has the same value for n and 1−n. Unpaired electrons
inside the narrow band at U < 0 are nearly localized (D ≈ 0) and the suppression of |Ekin|
down to zero by the applied field near half-filling resembles a trivial metal–insulator transition
at U � 0 for vanishing carrier concentration [14].

6.4. Chemical potential and compressibility

The chemical potential can be derived from the system of Lieb–Wu equations, using the exact
relation (see appendix D)

µ = ∂E

∂n
. (44)

Over a broad range of h and for all n, µ increases (algebraically) with increasing U/t
(figure 7), similarly to in the h = 0 case [14].

At n = 1 and U < 0, the chemical potential is equal to U/2 for arbitrary magnetic field.
It is field independent also in the case of an empty band (n = 0). However, at U > 0, µ is
field dependent at relatively strong h. Note that µ/t versus U/t shows sharp transitions near
the spin onset and spin saturation (figure 7).

On the other hand,µ(U) versusU/t in a weak fieldh � hc1 for alln �= 1 displays a smooth
crossover from the BCS-like itinerant behaviour (µ � nU/2 − 2t) to the Bose condensation
regime of local pairs (µ � nU/2−2t) when the renormalized chemical potential µ̄ ≡ µ−nU/2
approaches the bottom of the conduction band [14]. The finite shift of the chemical potential
(µ = U/2) at half-filling is characteristic of the asymmetric Hubbard model in equation (1).
In a slightly modified attractive Hubbard model with particle–hole symmetry [37], this shift is
equal to zero at half-filling. As one can see from figure 7, the variation of µ versus U at n = 1
and n = 0 for U � 0 is independent of h. We found in addition that the chemical potential
in the presence of a magnetic field at U � 0 in the vicinity of n = 1 changes smoothly as h
changes, in contrast to its discontinuity in the repulsive Hubbard model at half-filling [8]. Such
behaviour shows the gapless character of the charge energy excitations for all h and U � 0
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Figure 7. The ground-state chemical potential µ/t versus U/t . The notation is the same as for
figure 2.

at half-filling. Note that the absence of a charge gap in one dimension is in contrast with the
findings from Monte Carlo calculations for an attractive two-dimensional Hubbard model at
half-filling [38, 39].

The chemical potential is field independent in phases I and III. In the intermediate phase
II (hc1 < h < hc2) for all 0 < n < 1, the field dependence of µ is monotonic, so we have the
lower and the upper bounds for µ at any fixed U < 0, valid for arbitrary values of h and n:

−
√
U 2/4 + 4t2 � µ � U/2. (45)

Using the set of integral equations, we calculated the behaviour of the compressibility
κch ≡ ∂µ/∂n (see (E1)–(E5) in reference [14] with U replaced by −|U |).

In the absence of a magnetic field, κch increases with U for all n �= 1 (figure 8). Exactly
at half-filling, κch shows a discontinuity at U/t = 0: κch = tπ at U → −0 and κch = 0 for
U > 0. In a relatively strong magnetic field, κch may behave non-monotonically in phase II
(0 < s < n/2) and approaches its maximum value in the positive-U region for n > 1/2. At
U < 0, |U |/t � 1, we have κch ≈ t2π2/|U | for all h (see equation (24)), consistent with
the corresponding result for χ at U > 0 (see section 6.5) [9, 21]. For all U < 0 and h, the
compressibility κch is maximal at half-filling. In the presence of a magnetic field, at the spin
onset (upward-pointing triangles in figure 8) and near spin saturation (downward-pointing
triangles in figure 8), there is a cusp (sharp transition) in κch. In the fully saturated phase
(U � Uc2) we have κch = 2tπ2 sin(nπ), so κch has the same value for n and 1 − n (figure 8,
to the right of the downward-pointing triangles). In this phase the compressibility is maximal
at n = 1/2. In particular, κch = 0 at U � Uc2 in an empty or half-filled band (incompressible
Fermi liquid, consisting of fully polarized electrons) and this is similar to the Mott–Hubbard
localization of electrons at n = 1 and U > 0 in the critical field.
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Figure 8. The ground-state compressibility κch versusU/t . The notation is the same as for figure 2.

For fixed U at h � hc1 and h � hc2, the compressibility is independent of h. In
the intermediate phase hc1 � h � hc2, the compressibility shows slightly non-monotonic
behaviour near n = 1 as the magnetic field increases. For non-interacting electrons (U = 0),
κch decreases with h for all n (see equation (19)).

Note that the compressibility with a single maximum as a function of U/t for different n
qualitatively reproduces the main features of Ekin shown in figure 6.

Using the analytical results for the ground-state energy of the half-filled band [11], we
can calculate κch near the spin onset:

κch

∣∣
n→1 = tπI1(−2πt/U)

I0(−2πt/U)
+
tsπI1(−2πt/U)

I 2
0 (−2πt/U)

(46)

where I0 and I1 are modified Bessel functions. Our numerical results coincide with this
formula. For the charge susceptibility κ−1

ch , this result is consistent with the corresponding
zero-field spin susceptibility χ in the repulsive Hubbard model [9, 21].

The problem of determining the spectrum of the charge-density-wave excitations at half-
filling as a function of s essentially does not differ from the analogous problem of determining
the spin-density-wave (SDW) spectrum as a function of electron concentration in the repulsive
Hubbard model with h = 0 [16]. Note that the velocity of the charge excitations for theU < 0
case, vch, simply reproduces the charge susceptibility vch = π/2κch [10, 21].

6.5. Spin (magnetic) susceptibility

In phases I and III the average spin s does not depend on h, i.e., the spin susceptibility
χ ≡ t ∂s/∂h is always equal to zero. Thus the curves for χ−1 versus U/t (figure 9) exist only
in the intermediate phase Uc1 � U � Uc2 with spin 0 < s < n/2 (between the upward- and
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Figure 9. The ground-state inverse spin susceptibility χ−1 versus U/t . The notation is the same
as for figure 2. Curves exist only between downward- and upward-pointing triangles. Beyond this
region, χ = 0.

downward-pointing triangles). Note that the spin onset (downward triangles) in the presence
of a field takes place for finite χ−1 for all n �= 1, in full agreement with our previous results
(see section 5.1). In an infinitesimal field h → 0, χ−1 becomes non-analytic at U = 0 and the
curves for all 0 < n � 1 have a discontinuity at U/t → 0.

The reverse spin (magnetic) susceptibility χ−1 shows a rapid increase in theU < 0 region
for various n and h. This is obvious evidence for the existence of a spin energy gap and
suppression of spin excitations by the increasing of a coupling constant, |U |. When h → 0,
χ−1 exists only for U > 0. For U > 0, there is no spin energy gap (hc1 = 0) for all U
and χ−1 decreases smoothly with U/t and approaches the spin (magnetic) saturation at Uc2

(downward-pointing triangles). For finite h-values, χ−1 versus U/t has a maximum in the
negative-U region (figure 9).

At U → Uc2 and U → Uc1, χ−1 → 0 (χ diverges) for n = 1 and χ−1 �= 0 (χ is finite)
for all n �= 1.

Enhancement of κch and χ has the same physical origin: the high density of states near
the top of the conduction band.

For fixed U/t and n, the curves for χ−1 versus h/t exist only in the intermediate phase
hc1 � h � hc2. At h → hc1 and h → hc2, we have χ−1 → 0 for n = 1 and χ−1 �= 0 for all
n �= 1.

7. Summary

In this paper we have calculated the exact ground-state properties in the one-dimensional
Hubbard model for arbitrary sign of U . We have derived the analytical expressions at U = 0
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and the expansions in powers of t/|U | and performed numerical calculations of the ground-
state properties for various electron concentrations n over a wide range of coupling strength
U/t and magnetic field h/t .

Several interesting features emerge from the investigation of the ground-state properties
under the variation ofU/t for various n and h. All of the thermodynamic quantities for various
band fillings n are continuous functions of h/t and U/t , including U = 0, although they are
not analytical functions and exhibit sharp transitions (kinks) at the onset of magnetization
and spin (magnetic) saturation. The calculated phase diagram in the U–n plane shows two
consecutive second-order phase transitions near the onset of magnetization and the saturation.

The total energy, the magnetization and the concentration of doubly occupied sites are
monotonic functions of both U/t and h/t over the whole range, while they are in general
non-monotonic functions of the parameter n. On the other hand, the kinetic energy Ekin, the
chemical potential µ, the compressibility κch and the spin (magnetic) susceptibility χ show
non-monotonic behaviour as functions of U/t , h/t and n. We find that µ is a monotonic
function of U and it also decreases with n at given U and h. We find a close connection
between the presence of the spin energy gap in the spectrum and enhanced spin (magnetic)
susceptibility as a function of h/t at h → hc1 for U < 0 and the formation of a charge energy
gap and enhanced compressibility at half-filling for the U > 0 model.

For all n = 1, Ekin in the absence of a magnetic field is a symmetric function of U/t
and shows a smooth crossover from the weakly bound electronic states with Ekin ∼ t to the
strong-coupling regime withEkin ∼ t2/|U |, as coupling strength |U |/t is increased. Note that
at large |U |/t (U < 0) and s = 0, the free-single-particle motion of electrons inside the band
is strongly suppressed by increasing |U | due to the large occupation of doubly occupied sites
in the bound state.

In the absence of a magnetic field, χ−1 becomes non-analytic at U = 0 and the curves for
χ−1 versus U for different n show discontinuity at U/t → 0. The compressibility κch away
from half-filling (n �= 1) increases with U for the entire parameter space. However, at n = 1
it shows a discontinuity at U = 0 from its non-interacting value to κch = 0. In some range
of U > 0, κch becomes identically zero independently of h. Note that κch is a non-monotonic
function of n at U > 0 and decreasing function of U at U < 0.

In addition, we found that the charge energy gap for all h andU � 0 does not exist and the
chemical potential µ exhibits a smooth change with n in the vicinity of n = 1. Our numerical
and analytical calculations of µ for n = 1 and n = 0 provide the corresponding upper and
lower bounds for µ for the entire U -space. Work currently in progress is aimed to calculate
the variation of the exact ground-state charactersitics versus concentration and magnetic field
for various U > 0 and U < 0 in the entire parameter space of 0 � n � 1 and wide range of
h > 0 respectively.
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Appendix A. Strong-coupling expansion

We introduce the expansions up to the second order of the parameter 4t/|U | � 1:

ρ(k) = 1

2π
− 4t

U
ρ1(k) +

(
4t

U

)2

ρ2(k) + · · · (A.1)

σ(λ) = −4t

U
σ1(l) +

(
4t

U

)2

σ2(l) + · · · (A.2)

Q = Q0 +
4t

U
Q1 +

(
4t

U

)2

Q2 + · · · (A.3)

where l ≡ −4tλ/U .
Substituting these series into the Lieb–Wu equations (see section 3 in [14] and section 3

in this paper) and taking the terms of the same order of magnitude, we have

Q0 = U(1 − 2s)π�(−U) + nπ�(U). (A.4)

�(x) = 1 if x > 0 and �(x) = 0 if x < 0, and

ρ1(k) = cos k

π

∫ b

−b
σ1(l)f̃1(k, l) dl (A.5)

σ1(l) = 1

2π2

∫ Q

−Q
f̃1(k, l) dk − 2

π

∫ b

−b
σ1(l

′)f̃2(l, l
′) dl′ (A.6)

∫ Q0

−Q0

ρ1(k) dk = Q1

π
(A.7)

∫ b

−b
σ1(l) dl = n

2
− s. (A.8)

where b ≡ 4tB/|U | and

f̃1(k, l) ≡
(
U

4t

)2

f1(k, λ) = 1

1 + [l − (4t/|U |) sin k]2 (A.9)

f̃2(l, l
′) ≡

(
U

4t

)2

f2(λ, λ
′) = 1

4 + (l − l′)2
. (A.10)

We can ignore the term (4t/|U |) sin k in the denominator of f̃1(k, l) in equations (A.5)
and (A.6) without loss of accuracy. Thus we have

ρ1(k) = c1 cos k (A.11)

c1 = 1

π

∫ b

−b

σ1(l)

1 + l2
dl (A.12)

Q1 = 2πc1 sinQ0 (A.13)

σ1(l) = Q0

π2(1 + l2)
− 2

π

∫ b

−b

σ1(l
′)

4 + (l − l′)2
dl′. (A.14)

The function σ1(l) can be calculated using the integral equation (A.14) along with the
normalization condition (A.8). At spin (magnetic) saturation s = n/2, we have b = 0 and
σ1(l) = Q0/(1 + l2)π2. In particular, at U < 0 and half-filling (n = 1, s = 1/2), we have
σ1(l) = 0.
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Using the expression obtained for σ1(l), we can calculate c1 from equation (A.12). The
coefficient c1 monotonically increases from zero at s = n/2 with increasing n from 0 up to 1
or by decreasing s from n/2 down to 0.

Thus we have

E =
(
n

2
− s

)
�(−U) + Ep (A.15)

where

Ep = −2t

π
sinQ0 − t2

|U |
(
e1 + O

(
t

U

))
(A.16)

e1 = 4c1 [2Q0 − sin(2Q0)] (A.17)

D =
(
n

2
− s

)
�(−U) +

t

U
O

(
t

U

)
(A.18)

Ekin = −2t

π
sinQ0 − t2

|U |
(

2e1 + O
(
t

U

))
(A.19)

µ = U

2
�(−U)− 2t cos(nπ)�(U) + O

(
t

U

)
(A.20)

κch = 2πt sin(nπ)�(U) + O
(
t

U

)
(A.21)

h = −(U + 4t cos(2sπ))�(−U) + O
(
t

U

)
(A.22)

χ = 8πt sin(2sπ)�(−U) + O
(
t

U

)
. (A.23)

Appendix B. Magnetic field

For the magnetic field we have

h = ∂E

∂s
= −U�(−U)− 2t

∫ Q

−Q
dk ρs(k) cos k − 4tQsρ(Q) cosQ. (B.1)

�(x) = 1 if x > 0 and �(x) = 0 if x < 0; ρs(k) ≡ ∂ρ(k)/∂s and σs(λ) ≡ ∂σ(λ)/∂s satisfy
the following integral equations:

ρs(k) = |U | cos k

4tπ

∫ B

−B
dλ σs(λ)f1(k, λ) +

|U | cos k

4tπ
[f1(k, B) + f1(k,−B)] σ(B)Bs (B.2)

σs(λ) = |U |
4tπ

∫ Q

−Q
dk ρs(k)f1(k, λ)− |U |

2tπ

∫ B

−B
dλ′ σs(λ′)f2(λ, λ

′)

+
|U |
4tπ

[f1(Q, λ) + f1(−Q,λ)] ρ(Q)Qs

− |U |
2tπ

[f2(λ, B) + f2(λ,−B)] σ(B)Bs (B.3)

and Qs ≡ ∂Q/∂s, Bs ≡ ∂B/∂s are determined from the relations∫ Q

−Q
ρs(k) dk + 2ρ(Q)Qs = −2�(−U) (B.4)

∫ B

−B
σs(λ) dλ + 2σ(B)Bs = −1. (B.5)
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Appendix C. Concentration of doubly occupied sites

For the concentration of doubly occupied sites we have

D = ∂E

∂U
=

(
n

2
− s

)
�(−U)− 2

∫ Q

−Q
dk ρU(k) cos k − 4QUρ(Q) cosQ (C.1)

where

ρU(k) ≡ t ∂ρ(k)/∂U and σU(λ) ≡ t ∂σ (λ)/∂U

satisfy the following integral equations:

ρU(k) = |U | cos k

4tπ

∫ B

−B
dλ σU(λ)f1(k, λ)

+
U cos k

2|U |π
∫ B

−B
dλ σ(λ)

[
f1(k, λ)/2 − (U/4t)2f1(k, λ)

2
]

+
|U | cos k

4tπ
[f1(k, B) + f1(k,−B)] σ(B)BU (C.2)

σU(λ) = |U |
4tπ

∫ Q

−Q
dk ρU(k)f1(k, λ)− |U |

2tπ

∫ B

−B
dλ′ σU(λ′)f2(λ, λ

′)

+
U

2|U |π
∫ Q

−Q
dk ρ(k)

[
f1(k, λ)/2 − (U/4t)2f1(k, λ)

2
]

− U

|U |π
∫ B

−B
dλ′ σ(λ′)

[
f2(λ, λ

′)/2 − (U/2t)2f2(λ, λ
′)2

]
+

|U |
4tπ

[f1(Q, λ) + f1(−Q,λ)] ρ(Q)QU

− |U |
2tπ

[f2(λ, B) + f2(λ,−B)] σ(B)BU (C.3)

andQU ≡ t ∂Q/∂U , BU = t ∂B/∂U are determined from the relations (A4) and (A5) in [14].

Appendix D. Chemical potential

For the chemical potential we have

µ = ∂E

∂n
= U

2
�(−U)− 2t

∫ Q

−Q
dk ρn(k) cos k − 4tQnρ(Q) cosQ (D.1)

where ρn(k) ≡ ∂ρ(k)/∂n and σn(λ) ≡ ∂σ(λ)/∂n satisfy the integral equations (C2) and (C3)
in [14] with U replaced by −|U |, Qn ≡ ∂Q/∂n is determined from the relation∫ Q

−Q
ρn(k) dk + 2ρ(Q)Qn = �(U) (D.2)

and Bn ≡ ∂B/∂n is determined by (C5) in [14].

Appendix E. Spin (magnetic) susceptibility

The spin (magnetic) susceptibility is

χ ≡ t ∂s

∂h
≡ t

hs
(E.1)
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hs = −2t
∫ Q

−Q
dk ρss(k) cos k − 8tQsρs(Q) cosQ

− 4tQssρ(Q) cosQ + 4tQ2
s

[
ρ(Q) sinQ− ∂ρ(k)

∂k

∣∣∣∣
k=Q

cosQ

]
(E.2)

where ρs(k) ≡ ∂ρ(k)/∂s was determined in appendix D of reference [14]; ρss(k) ≡ ∂ρs(k)/∂s

and σss(λ) ≡ ∂σs(λ)/∂s satisfy the following integral equations:

ρss(k) = |U | cos k

4tπ

∫ B

−B
dλ σss(λ)f1(k, λ) +

|U | cos k

2tπ
[f1(k, B) + f1(k,−B)] σs(B)Bs

+
|U | cos k

4tπ

[
∂f1(k, B)

∂B
+
∂f1(k,−B)

∂B

]
σ(B)B2

s

+
|U | cos k

4tπ
[f1(k, B) + f1(k,−B)]

(
∂σ(λ)

∂λ

∣∣∣∣
λ=B

)
B2
s

+
|U | cos k

4tπ
[f1(k, B) + f1(k,−B)] σ(B)Bss (E.3)

σss(λ) = |U |
4tπ

∫ Q

−Q
dk ρss(k)f1(k, λ)− |U |

2tπ

∫ B

−B
dλ′ σss(λ′)f2(λ, λ

′)

+
|U |
2tπ

[f1(Q, λ) + f1(−Q,λ)] ρs(Q)Qs

− |U |
tπ

[f2(λ, B) + f2(λ,−B)] σs(B)Bs

+
|U |
4tπ

[
∂f1(Q, λ)

∂Q
+
∂f1(−Q,λ)

∂Q

]
ρ(Q)Q2

s

+
|U |
4tπ

[f1(Q, λ) + f1(−Q,λ)]
(
∂ρ(k)

∂k

∣∣∣∣
k=Q

)
Q2
s

+
|U |
4tπ

[f1(Q, λ) + f1(−Q,λ)] ρ(Q)Qss

− |U |
2tπ

[
∂f2(λ, B)

∂B
+
∂f2(λ,−B)

∂B

]
σ(B)B2

s

− |U |
2tπ

[f2(λ, B) + f2(λ,−B)]
(
∂σ(λ)

∂λ

∣∣∣∣
λ=B

)
B2
s

− |U |
2tπ

[f2(λ, B) + f2(λ,−B)] σ(B)Bss (E.4)

and Qs ≡ ∂Q/∂s, Bs ≡ ∂B/∂s were given in appendix D of reference [14]; Qss ≡ ∂Qs/∂s

and Bss ≡ ∂Bs/∂s are determined from the relations∫ Q

−Q
ρss(k) dk + 4ρs(Q)Qs + 2

(
∂ρ(k)

∂k

∣∣∣∣
k=Q

)
Q2
s + 2ρ(Q)Qss = 0 (E.5)

∫ B

−B
σss(λ) dλ + 4σs(B)Bs + 2

(
∂σ(λ)

∂λ

∣∣∣∣
λ=B

)
B2
s + 2σ(B)Bss = 0. (E.6)

The Lieb–Wu equations (see section 3 in [14] and section 3 in this paper) and (E.1)–(E.6)
determine χ as a function of −U/t , n and s.
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